Oral Uncaria rhynchophylla (UR) reduces kainic acid-induced epileptic seizures and neuronal death accompanied by attenuating glial cell proliferation and S100B proteins in rats

Yi-Wen Lin, a, b, Ching-Liang Hsieh, a, b, c, *

a Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan

b Acupuncture Research Center, China Medical University, Taichung, Taiwan

c Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan

A R T I C L E I N F O

Article history:
Received 17 September 2010
Received in revised form
15 December 2010
Accepted 5 March 2011
Available online 12 March 2011

Keywords:
Epileptic seizures
Hippocampus
GFAP
S100B
Traditional Chinese Medicine
Uncaria rhynchophylla

Abstract

Aim of the study: Epilepsy is a common clinical syndrome with recurrent neuronal discharges in cerebral cortex and hippocampus. Here we aim to determine the protective role of Uncaria rhynchophylla (UR), an herbal drug belong to Traditional Chinese Medicine (TCM), on epileptic rats.

Methods and methods: To address this issue, we tested the effect of UR on kainic acid (KA)-induced epileptic seizures and further investigate the underlying mechanisms.

Results: Oral UR successfully decreased neuronal death and discharges in hippocampal CA1 pyramidal neurons. The population spikes (PSs) were decreased from 4.1 ± 0.4 mV to 2.1 ± 0.3 mV in KA-induced epileptic seizures and UR-treated groups, respectively. Oral UR protected animals from neuronal death induced by KA treatment (from 34 ± 4.6 to 191.7 ± 48.6 neurons/field) through attenuating glial cell proliferation and S100B protein expression but not GABAA and TRPV1 receptors.

Conclusions: The above results provide detail mechanisms underlying the neuroprotective action of UR on KA-induced epileptic seizure in hippocampal CA1 neurons.

Crown Copyright © 2011 Published by Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Temporal lobe epilepsy (TLE) is a common clinical syndrome that is due to abnormal discharges in the brain and especially in the hippocampus. Kainic acid (KA) is a potent neuroexcitatory and neurotoxic agonist of the KA subtype of glutamate receptors, which have been shown to contribute to epilepsy. Recent studies have suggested that injection of KA can induce TLE in both rats and mice (Tauck and Nadler, 1985; Dudek et al., 2010; Kim et al., 2010). The epilepsy symptoms induced by intraperitoneal KA injection are similar to temporal lobe seizures in humans especially in the hippocampus (Rao et al., 2006; Antonucci et al., 2009; Raedt et al., 2009). Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system (CNS), which is released from presynaptic terminals and binds to glutamate receptors including KA receptors (Barnes and Henley, 1992; Hollmann and Heinemann, 1994). A balanced neuronal network is important for mammalian brain homeostasis and losing of this balance in the brain’s network is usually associated with neurological and neurodegenerative diseases such as epilepsy (Talathi et al., 2009), Parkinson’s (Llinas et al., 1999), Huntington’s disease (Rubenstein and Merzenich, 2003), and schizophrenia (Wassef et al., 2003). Epilepsy is often presented in neurodegenerative diseases where patients suffer from recurrent seizures and it is usually associated with an imbalance of excitatory and inhibitory neurons in the CNS (Brenner, 2004). Dramatic increases of excitatory or decreases in inhibitory neurotransmission are often reported as causes of epilepsy.

S100 proteins are low-molecular weight proteins that have calcium-binding properties and were first isolated from brain in 1965 (Moore, 1965; Donato, 1999). There are over 19 types of S100 proteins that can be further subtyped into S100A and S100B (Isobe and Okuyama, 1984). These proteins are expressed in a variety of tissues and influence protein phosphorylation, cytoskeleton assembly and disassembly, cell differentiation and proliferation, and intracellular calcium homeostasis (Donato, 1999). The S100B proteins are highly expressed in the CNS and non-neuronal cells including melanocytes, chondrocytes, and adipocytes (Rickmann and Wolff, 1995; Ichikawa et al., 1997; Donato, 1999). S100B is reported to be secreted from cells (Shashoua et al., 1984) to enhance neurite outgrowth (Winningham-Major et al., 1989) and stimulates astrocyte proliferation in vitro (Selinfreund et al., 1991). Age-related increases in astrocytes have been observed in the cor-

* Corresponding author at: Graduate Institute of Acupuncture Science, China Medical University, 91 Hsueh-Shih Road, Taichung 40402, Taiwan.
Tel.: +886 4 22053366x3600; fax: +886 4 22035191.
E-mail address: clhsieh@mail.cmuh.org.tw (C.-L. Hsieh).

0378-8741/$ – see front matter. Crown Copyright © 2011 Published by Elsevier Ireland Ltd. All rights reserved.
doi:10.1016/j.jep.2011.03.018
the expression of the astrocyte specific marker, glial fibrillary acidic protein (GFAP). S100B can also increase intracellular free calcium concentrations (Barger and Van Eldik, 1992). Increases of S100B by astrocytes from neuronal damage or dysfunction usually result from chronic epilepsy (Griffin et al., 1995).

The γ-aminobutyric acid (GABA) receptors are major inhibitory neurotransmitters in the mammalian CNS that can be divided into the following subtypes: GABA_A, GABA_B, and GABA_C. The GABA_A receptor is the major mediator of fast inhibitory synaptic transmission in the brain and has been usually reported to contribute to abnormal models of epilepsy (Kapur and Macdonald, 1997; Kohling et al., 2000; Cohen et al., 2003). Compounds leading to the activation of GABA_A receptors are often used for synaptic inhibition and have been developed for several anti-epileptic drugs such as benzodiazepines, gabapentin, barbiturates and neurosteroids (Sieghart and Spyer, 2002; Kang and Macdonald, 2009). Therefore, direct injection of GABA agonists into the epileptogenic area is considered to be the most effective method to treat epilepsy (Schrann and Clusmann, 2008).

Transient receptor potential vanilloid subtype 1 (TRPV1) was recently classified as the capsaicin receptor, which is the burning element in peppers. TRPV1 has been shown to be in the hippocampus and is considered an important factor for maintaining the expression of long-term potentiation (LTP) (Marsch et al., 2007). TRPV1 is also expressed in bladder epithelia, and mice lacking TRPV1 have a reduced response to bladder filling (Birder et al., 2002). Recent studies have reported that TRPV1 is a novel anti-epileptogenic target (Fu et al., 2009). Activation of TRPV1 can also increase excitatory circuit activity in the dentate gyrus of mice with TLE, which implies that TRPV1 participates in the epileptic process (Fu et al., 2009; Bhaskaran and Smith, 2010).

In Traditional Chinese Medicine (TCM), Uncaria rhynchophylla (UR) is usually used to decrease hyperfunction of the liver, dizziness, and epilepsy. Several studies have suggested that UR has an anti-convulsive effect in KA-induced epileptic seizures in rats (Hsieh et al., 1999; Tang et al., 2010). The alkaloid components of UR including rhynchophylline,isorhynchophylline, and isocorynoxine are reported to protect neurons from glutamate-induced cell death in cerebellar granule cells (Shimada et al., 1999). In addition, UR can reduce apoptosis and plays as a role in neuronal protection (Tang et al., 2010), which may be mediated via the inhibition of c-Jun N-terminal kinase phosphorylation and nuclear factor-κB activity in KA-treated rats (Hsieh et al., 2009).

To identify the curative effects and detail mechanisms of UR on KA-induced epileptic seizures, we examined whether UR could attenuate KA-induced hippocampal neuron firing. UR is known for its anti-convulsant role and anti-epileptic actions through inhibition of abnormal neural discharges and apoptosis. Here, we used immunohistochemistry, Western blotting, and electrophysiology to evaluate the role of UR in KA-induced epileptic seizures. In this study, we compared the expression of GFAP, S100B protein, GABA_A, and TRPV1 in control, KA-induced, and UR-treated groups. Overall, oral UR decreased the firing of hippocampal CA1 neurons through attenuating GFAP, S100B protein levels but not GABA_A and TRPV1 receptors.

2. Material and methods

2.1. Animals

Male Sprague–Dawley (SD) rats weighing 200–300 g were used in this study. Rats were fasted overnight with free access to water. Usage of these animals was approved by the Institute Animal Care and Use Committee of China Medical University and followed the Guide for the Use of Laboratory Animals (National Academy Press).

2.2. Extraction of UR

The UR [Rubiaceae, Uncaria rhynchophylla (Miq.) Jacks.] in the present study was purchased from China, and authenticated by Chiu-Lin Tsai (director, division of Traditional Medicine Pharmacy, China Medical University Hospital). The UR was extracted by the Koda Pharmaceutical Company (Taoyuan, Taiwan). The voucher specimen was kept in the neuroscience laboratory room of China Medical University. Eight kilograms of crude UR was extracted with 64 kg of 70% alcohol by boiling for 35 min. These extracts were filtered, freeze-dried, and then stored in a drier box. The total yield was 566.63 g (7.08%). The freeze-dried extracts of UR were qualified by a high performance liquid chromatography (HPLC) system (interface D-700, Pump L-7100, UV-Vis Detector L-7420; Hitachi Instruments Service Co. Ltd., Ibaraki-ken, Japan) using rhynchophylline (Matsuura Yakugyo Co. Ltd., Japan) as a standard from the Koda Pharmaceutical Company. Each gram of freeze-dried extract contained 1.81 mg of pure alkaloid component of UR. The dose response for this compound was reported in our previous study (Hsieh et al., 1999); hence, we used this effective dose for all experiments in this study.

2.3. Establishment of epileptic seizure model

A total of 30 SD rats were used for these experiments. Four days prior to the electroencephalogram (EEG) and electromyogram (EMG) recordings, all rats underwent stereotactic surgery with chloral hydrate (400 mg/kg, i.p.) anesthesia. The scalp was then incised from the midline and the skull was exposed. Stainless steel screws electrodes were implanted on the dura over the bilateral sensorimotor cortices to serve as recording electrodes. A reference electrode was placed in the frontal sinus. Bipolar electrical wires were placed on the neck muscles for EMG recordings. Electrodes were connected to an EEG and EMG-monitoring machine (MPIOOWSW, BIOPAC System, Inc., CA, USA). The epileptic seizures were confirmed by behavior observation (including wet dog shakes, paw tremors and facial myoclonia under a freely moving and conscious state), and epileptiform discharges on EEG recordings.

The rats were randomly divided into three experimental groups including electrophysiological studies (9 rats total with 3 rats in each group), immunohistochemistry staining (IHC) of NeuN and GFAP (9 rats total with 3 rats in each group), and Western blot analysis of S100B proteins, GABA_A, and TRPV1 receptors (12 rats total with 4 rats per group) after KA-induced epileptic seizures.

Each experiment was divided into the following three groups: (1) the control group with phosphate buffer solution (PBS) i.p. only without KA; (2) the KA group with KA at 12 mg/kg i.p. only; (3) the UR group receiving oral UR at 1 g/kg 5 days/week continuously for 2 weeks starting the next day after KA injection. All the rats were sacrificed on the 14th day after KA injection and the brains were removed for electrophysiological, IHC and Western blot studies.

2.4. Electrophysiology

Adult male SD rats were anesthetized with isoflurane and decapitated. The brains were quickly removed and placed in ice-cold artificial CSF (ACSF) containing the following (mM): 119 NaCl, 2.5 KCl, 26.2 NaHCO3, 1 NaH2PO4, 1.3 MgSO4, 2.5 CaCl2, and 11 glucose (the pH was adjusted to 7.4 by gassing with 5% CO2–95% O2). Transverse hippocampal slices (450 μm thick) were cut with a vibrating tissue slicer (Campden Instruments, Loughborough, UK) and transferred to an interface-type holding chamber at room temperature (25 °C). The slices were allowed to recover for at least 24 h before use.
90 min and then were transferred to an immersion-type recording chamber and perfused at 2 ml/min with ACSF. For extracellular field potential recording, a glass pipette filled with 3 M NaCl was positioned in the stratum pyramidale of the CA1 neuronal layer and the population spikes (PSs) were recorded. Bipolar stainless steel stimulating electrodes (Frederick Haer Company, Bowdoinham, ME) were placed in the stratum radiatum to stimulate Schaffer collateral (SC) branches. PS activity was recorded by applying a short-duration voltage pulse (∼1 ms) at the determined intensity every 30 s. All signals were filtered at 2 kHz using a low-pass Bessel filter provided with the amplifier and digitized at 5 kHz using CED micro 1401 interface running Signal software (Cambridge Electronic Design, Cambridge, UK). The average size of the PS was used for statistical comparisons. All data are presented as the mean ± standard error. Statistical significance was tested using the Mann–Whitney U test. A p value < 0.05 was considered statistically significant.

2.5. Immunohistochemistry staining

The animals were deeply anesthetized with chloral hydrate (400 mg/kg, i.p.), and perfused with normal saline via the cardiac vascular system followed by 4% paraformaldehyde (Merck, Frankfurt, Germany) in 0.1 M phosphate buffer saline (PBS, pH = 7.4). The brains were removed and put in the same fixative overnight at 4 °C. After a brief wash with PBS, the brains were transferred to 30% sucrose in 0.01 M PB for cryoprotection and then coronal sections containing the hippocampal area were cut to 20 μm in thickness using a cryo-sectioning technique. The sections were then preincubated (2 h, 25 °C) with 10% horse serum and 0.3% Triton X-100 in PBS to avoid non-specific binding. Sections were then incubated overnight at 4 °C with a mixture of rat monoclonal antibody against GFAP (1:200; Oncogene, USA) and NeuN (1:1000; Chemicon, USA), 0.1% horse serum, and 0.1% Triton X-100 in PBS. Sections were subsequently incubated (2 h, 25 °C) with biotinylated-conjugated secondary antibody (1:200 diluted; Vector, Burlingame, CA 94010, USA), followed by incubation with avidin-horseradish peroxidase complex (ABC-Elite, Vector), and finally were visualized with 3,3′-diaminobenzidine as the chromogen. Sections were washed with PBS between incubation steps 3 times for 10 min each time.

2.6. Western blot analysis

Bilateral hippocampi were immediately excised to extract protein. Total protein was prepared by homogenizing hippocampi in lysis buffer containing 20 mmol/L imidazole–HCl (pH 6.8), 100 mmol/L KCl, 2 mmol/L MgCl₂, 20 mmol/L EGTA (pH 7.0), 300 mmol/L sucrose, 1 mmol/L NaF, 1 mmol/L sodium vanadate, 1 mmol/L sodium molybdate, 0.2% Triton X-100 and a proteinase inhibitor cocktail for 1 h at 4 °C. Proteins were extracted (30 μg per sample assessed by BCA protein assay) and subjected to 7.5–10% SDS–Tris glycine gel electrophoresis and transferred to a nitrocellulose membrane. The membrane was blocked with 5% nonfat milk in TBST buffer (10 mmol/L Tris [pH 7.5], 100 mmol/L NaCl, 0.1% Tween 20), incubated with primary antibody in TBST with bovine serum albumin, and incubated for 1 h at room temperature. Peroxidase-conjugated secondary antibody (1:500) was used as the secondary antibody. The membrane was developed with the ECL-Plus protein detection kit.

3. Results

3.1. The effects of UR on KA-induced seizures through EEG

Since epilepsy is a common clinical disease resulting from overactivity of networks in the brain, we tried to induce an in vivo animal model of epilepsy in SD rats. Here, epileptic seizures were successfully induced in a total of 30 SD rats after KA injection (12 mg/kg, i.p.). There were three major types of seizures with their own characteristic electrophysiological activity. Limbic motor signs such as wet dog shakes, paw tremor and facial myoclonia were all recorded. Baseline conditions are displayed in Fig. 1A. Wet dog shakes were indicated by intermittent polyspike-like EEG activity (Fig. 1B). Facial myoclonia was defined by characteristic continuous sharp EEG activity (Fig. 1C). Paw tremor was considered to be characterized by continuous spike EEG activity (Fig. 1D). With these successful criteria, we used this model to investigate the effect of UR on epilepsy for all of our experiments.

3.2. The effect of UR on KA induced epilepsy in hippocampal CA1 pyramidal neurons

Since electrical epileptiform discharge events often require signals from CA3, we stimulated SC branches to evoke firing of CA1 pyramidal neurons. Therefore, we first evoked PSs in CA1 areas by stimulating at SC. In brain slices taken from control animals, we readily induced PSs in CA1 pyramidal neurons with a maximal mean amplitude of approximately 2.2 ± 0.3 mV (Fig. 2A, left panel, n = 8). To determine whether i.p. injection of KA successfully increased PSs in hippocampal CA1 areas, we recorded PSs in slices from KA-induced animals. Importantly, the amplitude of PSs was dramatically larger in KA treated animals than in control slices (4.1 ± 0.4 mV, Fig. 2A, middle panel, n = 8). Furthermore, to examine the role of UR in KA-induced epilepsy, we induced PSs in slices from UR-treated animals. Interestingly, the PSs induced in UR groups were significantly reduced in amplitude (2.1 ± 0.3 mV, Fig. 2A, right panel, n = 8). The relationship between PS amplitude and stimulations is shown in Fig. 2B. Accordingly, we suggest that oral UR can successfully rescue this KA-induced epilepsy phenotype in hippocampal CA1 pyramidal neurons.
3.3. Oral UR prevents hippocampal neuronal death after KA-induced epilepsy

Since KA is often reported to induce TLE in animal models, we wanted to determine if oral UR could prevent hippocampal neurons from death as determined by the neuronal marker NeuN. Notably, we found that PBS injection did not significantly cause hippocampal neurons death (Fig. 3A), especially in CA1 (Fig. 3B, 322 ± 23.3 neurons/field) and CA3 areas (Fig. 3C, 61.3 ± 4.7 neurons/field). Following injection of KA, our results showed that NeuN immunostaining was significantly reduced (Fig. 3D). Importantly, KA could successfully induce neuronal death both in CA1 (Fig. 3E, 34 ± 4.6 neurons/field) and CA3c cell layers (Fig. 3F, 16.3 ± 1.9 neurons/field). Accordingly, we wanted to test if oral UR could reduce neuronal death from i.p. KA injection. Upon oral UR treatment, hippocampal neurons became resistant to cell death from KA injection (Fig. 3G), which mainly occurred in CA1 (Fig. 3H, 191.7 ± 48.6 neurons/field) and CA3c cell layers (Fig. 3I, 37.3 ± 7.9 neurons/field). These results show that KA injection can successfully induce hippocampal neuronal death and this phenomenon can be decreased by oral UR.

3.4. Oral UR reduces hippocampal glial cell proliferation in KA-induced epilepsy

Many studies have reported that i.p. injection of KA can successfully induce epilepsy and induce glial cell overexpression and interactions with neurons simultaneously (Nadkarni and Jung, 2005). We next investigated if oral UR could decrease the overexpression of glial cells in hippocampal neurons from KA injection. Here we demonstrated that PBS injection, which served as the negative control, did not cause significant proliferation of glial cells with GFAP immunohistochemistry staining (Fig. 4A) especially in CA1 (Fig. 4B, 28 ± 2 glial cells/field) and the hilus (Fig. 4C, 57.3 ± 5.5 glial cells/field). Consistent with these find-
ings, animals that received KA injection showed increased GFAP
expression (Fig. 4D). These phenomena were clearly observed in CA1 (Fig. 4E, 158.3 ± 14.6 glial cells/field) and hilar areas (Fig. 4F, 139.7 ± 12.4 glial cells/field), suggesting that KA-induced epilepsy was accompanied by glial cell proliferation. Subsequently, we used UR to examine its role in modulation of KA-induced glial cell proliferation. These results demonstrate that oral UR can attenuate glial cell proliferation in the hippocampus (Fig. 4G) especially in CA1 (Fig. 4H, 60.3 ± 4.1 glial cells/field) and hilar areas (Fig. 4I, 67.3 ± 2.6 glial cells/field). These results suggest that KA can induce glial cell proliferation and that oral application of UR can reverse this phenomenon.

3.5. Oral UR attenuates hippocampal epileptic discharges through S100B protein but not by GABAA and TRPV1 receptors

Since we demonstrated that oral UR could successfully reduce neuronal death and glial cell proliferation, we further wanted to test if UR could decrease the glial cell-associated protein, S100B. Many studies have reported that S100B proteins are critical for the development of epilepsy, but the relationship between UR and S100B is unclear. Our results showed that KA injection could significantly increase the expression of S100B proteins (120.7 ± 2.55%, compared with control group) and that this phenomena could be reversed with oral UR (Fig. 5A, 107.6 ± 4.7% compared with control group). Furthermore, we also examined GABAA receptor levels because they also have been reported to be involved in epilepsy. Our results suggested that GABAA receptors were not altered during epilepsy (92.9 ± 5.17%, compared with control group) or in the UR group (Fig. 5B, 96.2 ± 3.61%, compared with the control group). Similar results were also observed for TRPV1 receptors (Fig. 5C). These results suggest that oral UR may reduce the effects of epilepsy in animals through regulating S100B proteins but not GABAA and TRPV1 receptors.

4. Discussion

In this study, we first established an animal model of an epileptic syndrome after i.p. injection of KA. There were three major types of seizures that were recorded such as wet dog shakes, paw tremors and facial myoclonia. These results implied that we could successfully induce seizures for further investigation of the protective effects of UR. We then used extracellular recording techniques to record PSs from hippocampal CA1 pyramidal neurons to investigate the temporal dynamics of evoked electrical activity in an animal model of TLE. Our results demonstrated that PSs (utilized as physiological features representing the integrated synaptic activity generated by synchronous firing of populations of neurons) were up-regulated with KA injection and further attenuated by oral UR. These phenomena included neuronal protection and decreased GFAP expression. Furthermore, oral UR decreased S100B expression, which in turn down-regulated glial cell proliferation to attenuate neuronal death. These changes were GABAA and TRPV1 independent since these receptors were not altered during the epileptic process.

Recent studies have suggested that expression of apoptosis associated genes including p53 and bax were significantly increased in a quinolinic acid-induced lesion area. Also, NMDA-
induced neuronal cell death and apoptosis associated genes were increased in hippocampal slices (Hughes et al., 1996). The alkaloid profile of UR is mainly constituted by five components: rhynchophylline, isorhynchophylline, corynoline, hirsutine, and hirsuteine. Rhynchophylline is an oxindole alkaloid that not only can protect rat neuronal cells from NMDA-induced neurotoxicity (Shimada et al., 1999), but can also inhibit Ca2+-activated channels and NMDA responses in oocytes (Qi et al., 2006). At the same time, injection of KA can mimic this phenomenon by activation of ionotropic glutamate receptors with a large Ca2+ influx to cause epilepsy and subsequent neurotoxicity. KA-induced epilepsy has been shown to result in an increased NMDA-dependent excitatory current and PSSs, and decreased GABA-mediated currents (Williams et al., 1993; Kang et al., 2004). Importantly, synaptic localization of GABA_A receptors were unchanged as indicated by the immunoreactivity of postsynaptic GABA_A receptors (Qi et al., 2006). In this study, GABA_A receptor quantities were similar, which was determined by Western blotting among controls, KA-induced and UR-treated groups. These results suggest that KA-induced epilepsy may have been mediated through attenuation of GABAergic currents but not total GABA_A receptors. Accordingly, regulation of tonic inhibition plays a more important role in epilepsy rather than a general alteration of GABA_A receptors (Qi et al., 2006).

Recent studies have reported that TRPV1 receptors are significantly increased in the dentate gyrus of mice with TLE compared with control mice. These studies suggest that TRPV1 agonists can increase neuronal excitability in the dentate gyrus of mice with TLE. This is an important factor to examine because novel anticonvulsant therapies are being based on TRPV1 receptor modulation (Bhaskaran and Smith, 2010). Our results showed that TRPV1 receptors were not altered in either KA-injection or UR-pretreated groups. We suggest that this result was likely due to the whole hippocampus being used for Western blot analysis in our study, which may have caused dilution of the relevant fraction.

It has been well studied that brain trauma can produce temporal lobe damage, which in turn leads to epilepsy, and then induced hippocampal sclerosis and temporal neocortical damage (Kapur et al., 1994; Rathore et al., 2009). However, the mechanisms underlying hippocampal neuronal damage after trauma in humans with TLE are still unclear. Many studies have reported significant neuronal loss in the hippocampus including CA3, and the hilus of the dentate gyrus (DG) (Houser, 1990; Kim et al., 2010). Clearly, it is important to attempt to control epilepsy by decreasing neuronal death from necrosis and apoptosis. In animal models of brain injury, the injury of the hippocampus is mainly expressed in the hilar area of the DG and CA3 but rarely in CA1 areas (Coulter et al., 1996; Golarai et al., 2001). In this study, we found that oral UR can successfully prevent hippocampal neuron death, especially in CA1 and CA3 areas. At the same time, oral UR can also down-regulate the over-expression of glial cells with GFAP immunostaining. These results suggest that oral UR is a potential candidate for the clinical therapy of epilepsy with mechanisms that are through increased neuron survival and attenuate glial cell proliferation.

The expression of S100B proteins is often increased in chronic epilepsy (Griffin et al., 1995), Alzheimer’s disease (Chaves et al., 2010), and head trauma (Morochovic et al., 2009). The overexpression of S100B protein is highly dependent on environmental factors including harmful stimuli. The overexpression of S100B protein during the epileptic process (especially in chronic epilepsy) suggests a principle role of S100B (Sakatani et al., 2007; de Oliveira et al., 2008). In the current study, we showed that S100B protein was increased with KA-induced epilepsy and this phenomenon was reversed by oral UR. This is important since S100B proteins can increase free calcium concentrations through activation of phospholipase C and IP3 generation in the CNS (Barger and Van Eldik, 1992). Here, we suggest that oral UR for 2 weeks can serve a protective role in animals recovering from KA-induced epilepsy through attenuation of S100B proteins.

The GABA system has a major inhibitory effect on the CNS, and the loss of GABAergic inhibitory transmission often accounts for TLE and in vitro models of epilepsy. For example, pretreatment of hippocampal neurons with GABA receptor antagonist CTZ results in a dramatic decrease in miniature inhibitory postsynaptic currents (mIPSCs) and GABA-mediated currents (Qi et al., 2006). At the same time, injection of KA can mimic this phenomenon by activation of ionotropic glutamate receptors with a large Ca2+ influx to cause epilepsy and subsequent neurotoxicity. KA-induced epilepsy has been shown to result in an increased NMDA-dependent excitatory current and PSSs, and decreased GABA-mediated currents (Williams et al., 1993; Kang et al., 2004). Importantly, synthetically localized GABA_A receptors were unchanged as indicated by the immunoreactivity of postsynaptic GABA_A receptors (Qi et al., 2006). In this study, GABA_A receptor quantities were similar, which was determined by Western blotting among controls, KA-induced and UR-treated groups. These results suggest that KA-induced epilepsy may have been mediated through attenuation of GABAergic currents but not total GABA_A receptors. Accordingly, regulation of tonic inhibition plays a more important role in epilepsy rather than a general alteration of GABA_A receptors (Qi et al., 2006).
5. Conclusions

In summary, we suggest that oral UR can successfully decrease neuronal death (as determined by NeuN immunostaining) and epileptiform discharges in hippocampal CA1 pyramidal neurons. The PPs were increased by KA but were attenuated in the UR-treated groups. Oral UR can protect neuronal death from KA-induced epilepsy by decreasing GFAP and S100B proteins but not GABA_A and TRPV1 receptors.

Conflict of interest

The authors confirm that there are no known conflicts of interest associated with this publication.

Acknowledgments

This study was supported by grant NSC 97-2320-B-039-011-MY3 from the National Science Council, Taiwan, R. O. C. and was also supported in part by Taiwan Department of Health Clinical Trial and Research Center of Excellence (DOH100-TD-B-111-004).

References

Antonacci, F., Bozzi, Y., Caleo, M., 2009. Intrahippocampal infusion of botulinum neu-
rotexin E (BoNT/E) reduces spontaneous recurrent seizures in a mouse model of

Barger, S.W., Van Eldik, L.J., 1992. S100β stimulates calcium fluxes in glial and neu-

receptors. Progress in Neurobiology 39, 113–133.

Bhaskaran, M.D., Smith, B.N., 2010. Effects of TRPV1 activation on synaptic excitation
in the dentate gyrus of a mouse model of temporal lobe epilepsy. Experimental
Neurology 233, 529–536.

urinary bladder function in mice lacking the vanilloid receptor TRPV1. Nature
Neuroscience 5, 836–840.

Brenner, R.P., 2004. EEG in convulsive and nonconvulsive status epilepticus. Journal of
Clinical Neurophysiology 21, 319–331.

Chaves, M.L., Camozzato, A.L., Ferreira, E.D., Piazenski, I., Kochhann, R., Dall'Igna, O.,
urinary bladder function in mice lacking the vanilloid receptor TRPV1. Nature
Neuroscience 5, 836–840.

tryptophan-containing subunit (alpha-subunit) of bovine brain S-100 protein. Journal of
Chinese Medicine 37, 522–524.

mutations associated with genetic epilepsies. Trends in Molecular Medicine 15,
430–438.

Kang, N., Jiang, L., He, W., Xu, J., Nedergaard, M., Kang, J., 2004. Presynaptic inac-
tivity of action potentials and posttotic inhibition of GABA currents contribute to
KA-induced disinhibition in CA1 pyramidal neurons. Journal of Neurophysiology
92, 873–887.

Kang, T.H., Murakami, Y., Matsumoto, K., Takayama, H., Kitajima, M., Aimi, N., Watan-
eabe, H., 2002. Rhynchohylidine and isorhynchophylline inhibit NMDA receptors

and Zn2+ sensitivity of hippocampal dentate granule cell GABA receptors. Jour-
nal of Neuroscience 17, 7632–7640.

Kapring, N., Ellison, D., Parkin, A.J., Hunkin, N.M., Burrows, E., Sampson, S.A., Morris-
lobe structures: lesion profile and pattern of memory disorder. Neuropsycholo-
gy 22, 23–38.

heparin-binding growth factor, blocks kainic acid-induced seizure and neuronal
death in mouse hippocampus. BMC Neuroscience 11, 42.

facilitated by hippocampal GABA receptor-mediated oscillations. Journal of
Neuroscience 20, 6820–6829.

of Uncaria rhynchophylla prevents against N-methyl-D-aspartate-induced apo-

dysrhythmia: a neurological and neurophysiological syndrome characterized by

Marcsh, R., Foeller, E., Rammes, G., Bunck, M., Kossil, M., Holbofer, F., Zieg-
ngansberger, W., Landgraf, R., Lutz, B., Wortjak, C.T., 2007. Reduced anxiety,
conditioned fear, and hippocampal long-term potentiation in transient receptor
potential vanilloid type 1 receptor-deficient mice. Journal of Neuroscience 27,
832–839.

Moore, B.W., 1965. A soluble protein character of the nervous system. Biochem-
ic and Biophysical Research Communications 19, 739–744.

Morochovic, R., Rac, O., Krita, M., Pingenorova, C., Cibur, P., Tomkova, D., Lenartova,
R., 2005. Serotonin S100 protein in early management of patients after mild trau-

Nadkarni, S., Jung, P., 2005. Synaptic inhibition and pathologic hyperexcitability
through enhanced neuron-astrocyte interaction: a modeling study. Journal of
Integrative Neuroscience 4, 207–226.

Qi, J., Yan, F., Fang, C., Luscher, B., Reddy, C.G., 2006. Downregulation of tonic GABA cur-
fents following epileptogenic stimulation of rat hippocampal cultures. Journal of
Physiology 577, 579–590.

Raedt, R., Van Dycke, A., Van Melkebeke, D., De Smedt, T., Claey, P., Wyckhuyts, T.,
Vonck, K., Wadam, W., Boon, P., 2009. Seizures in the intrahippocampal kainic acid
epilepsy model: characterization using long-term video-EEG monitoring in the

generation, spontaneous seizures, and mossy fiber sprouting in the F344 rat
model of temporal lobe epilepsy. Journal of Neuroscience Research 83, 1088–
1105.

Rathore, C., George, A., Kesavadas, C., Saras, P., Radhakrishnan, K., 2009. Effect of
intracerebral injection of mesial temporal lobe epilepsy with hippocampal sclerosis
(MTLE-HS). Epilepsia 50, 2249–2255.

field potential patterns in anesthetized and kainic acid-induced seizure condi-

field potential patterns in anesthetized and kainic acid-induced seizure condi-

field potential patterns in anesthetized and kainic acid-induced seizure condi-

of Uncaria rhynchophylla prevents against N-methyl-D-aspartate-induced apo-

Shan, Y., Carlock, L.R., Walker, P.D., 1997. NMDA receptor overstimulation triggers a
prized wave of immediate early gene expression: relationship to excitato-

Glossary

UR: Uncaria Rhynchophylla

TCM: Traditional Chinese Medicine

KA: kainic acid

CNS: central nervous system

GFAP: glial fibrillary acidic protein

GABA: γ-aminobutyric acid

TRPV1: Transient receptor potential vanilloid subtype 1

HPLC: high performance liquid chromatography

EEG: electroencephalogram

EMG: electromyogram

IHC: immunohistochemistry staining

PBS: phosphate buffer solution

ACSF: artificial cerebrospinal fluid

PS: population spikes

TLE: temporal lobe epilepsy. Schaffer collateral (SC)